3.612 \(\int \frac{1}{\sqrt{d+e x} \sqrt{f+g x} (a+c x^2)} \, dx\)

Optimal. Leaf size=230 \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{d+e x} \sqrt{\sqrt{c} f-\sqrt{-a} g}}{\sqrt{f+g x} \sqrt{\sqrt{c} d-\sqrt{-a} e}}\right )}{\sqrt{-a} \sqrt{\sqrt{c} d-\sqrt{-a} e} \sqrt{\sqrt{c} f-\sqrt{-a} g}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{d+e x} \sqrt{\sqrt{-a} g+\sqrt{c} f}}{\sqrt{f+g x} \sqrt{\sqrt{-a} e+\sqrt{c} d}}\right )}{\sqrt{-a} \sqrt{\sqrt{-a} e+\sqrt{c} d} \sqrt{\sqrt{-a} g+\sqrt{c} f}} \]

[Out]

ArcTanh[(Sqrt[Sqrt[c]*f - Sqrt[-a]*g]*Sqrt[d + e*x])/(Sqrt[Sqrt[c]*d - Sqrt[-a]*e]*Sqrt[f + g*x])]/(Sqrt[-a]*S
qrt[Sqrt[c]*d - Sqrt[-a]*e]*Sqrt[Sqrt[c]*f - Sqrt[-a]*g]) - ArcTanh[(Sqrt[Sqrt[c]*f + Sqrt[-a]*g]*Sqrt[d + e*x
])/(Sqrt[Sqrt[c]*d + Sqrt[-a]*e]*Sqrt[f + g*x])]/(Sqrt[-a]*Sqrt[Sqrt[c]*d + Sqrt[-a]*e]*Sqrt[Sqrt[c]*f + Sqrt[
-a]*g])

________________________________________________________________________________________

Rubi [A]  time = 0.203994, antiderivative size = 230, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 3, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.107, Rules used = {912, 93, 208} \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{d+e x} \sqrt{\sqrt{c} f-\sqrt{-a} g}}{\sqrt{f+g x} \sqrt{\sqrt{c} d-\sqrt{-a} e}}\right )}{\sqrt{-a} \sqrt{\sqrt{c} d-\sqrt{-a} e} \sqrt{\sqrt{c} f-\sqrt{-a} g}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{d+e x} \sqrt{\sqrt{-a} g+\sqrt{c} f}}{\sqrt{f+g x} \sqrt{\sqrt{-a} e+\sqrt{c} d}}\right )}{\sqrt{-a} \sqrt{\sqrt{-a} e+\sqrt{c} d} \sqrt{\sqrt{-a} g+\sqrt{c} f}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[d + e*x]*Sqrt[f + g*x]*(a + c*x^2)),x]

[Out]

ArcTanh[(Sqrt[Sqrt[c]*f - Sqrt[-a]*g]*Sqrt[d + e*x])/(Sqrt[Sqrt[c]*d - Sqrt[-a]*e]*Sqrt[f + g*x])]/(Sqrt[-a]*S
qrt[Sqrt[c]*d - Sqrt[-a]*e]*Sqrt[Sqrt[c]*f - Sqrt[-a]*g]) - ArcTanh[(Sqrt[Sqrt[c]*f + Sqrt[-a]*g]*Sqrt[d + e*x
])/(Sqrt[Sqrt[c]*d + Sqrt[-a]*e]*Sqrt[f + g*x])]/(Sqrt[-a]*Sqrt[Sqrt[c]*d + Sqrt[-a]*e]*Sqrt[Sqrt[c]*f + Sqrt[
-a]*g])

Rule 912

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegr
and[(d + e*x)^m*(f + g*x)^n, 1/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e, f, g, m, n}, x] && NeQ[c*d^2 + a*e^2,
 0] &&  !IntegerQ[m] &&  !IntegerQ[n]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{d+e x} \sqrt{f+g x} \left (a+c x^2\right )} \, dx &=\int \left (\frac{\sqrt{-a}}{2 a \left (\sqrt{-a}-\sqrt{c} x\right ) \sqrt{d+e x} \sqrt{f+g x}}+\frac{\sqrt{-a}}{2 a \left (\sqrt{-a}+\sqrt{c} x\right ) \sqrt{d+e x} \sqrt{f+g x}}\right ) \, dx\\ &=-\frac{\int \frac{1}{\left (\sqrt{-a}-\sqrt{c} x\right ) \sqrt{d+e x} \sqrt{f+g x}} \, dx}{2 \sqrt{-a}}-\frac{\int \frac{1}{\left (\sqrt{-a}+\sqrt{c} x\right ) \sqrt{d+e x} \sqrt{f+g x}} \, dx}{2 \sqrt{-a}}\\ &=-\frac{\operatorname{Subst}\left (\int \frac{1}{-\sqrt{c} d+\sqrt{-a} e-\left (-\sqrt{c} f+\sqrt{-a} g\right ) x^2} \, dx,x,\frac{\sqrt{d+e x}}{\sqrt{f+g x}}\right )}{\sqrt{-a}}-\frac{\operatorname{Subst}\left (\int \frac{1}{\sqrt{c} d+\sqrt{-a} e-\left (\sqrt{c} f+\sqrt{-a} g\right ) x^2} \, dx,x,\frac{\sqrt{d+e x}}{\sqrt{f+g x}}\right )}{\sqrt{-a}}\\ &=\frac{\tanh ^{-1}\left (\frac{\sqrt{\sqrt{c} f-\sqrt{-a} g} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{-a} e} \sqrt{f+g x}}\right )}{\sqrt{-a} \sqrt{\sqrt{c} d-\sqrt{-a} e} \sqrt{\sqrt{c} f-\sqrt{-a} g}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{\sqrt{c} f+\sqrt{-a} g} \sqrt{d+e x}}{\sqrt{\sqrt{c} d+\sqrt{-a} e} \sqrt{f+g x}}\right )}{\sqrt{-a} \sqrt{\sqrt{c} d+\sqrt{-a} e} \sqrt{\sqrt{c} f+\sqrt{-a} g}}\\ \end{align*}

Mathematica [A]  time = 0.193762, size = 229, normalized size = 1. \[ \frac{-\frac{\tan ^{-1}\left (\frac{\sqrt{d+e x} \sqrt{-\sqrt{-a} g-\sqrt{c} f}}{\sqrt{f+g x} \sqrt{\sqrt{-a} e+\sqrt{c} d}}\right )}{\sqrt{\sqrt{-a} e+\sqrt{c} d} \sqrt{-\sqrt{-a} g-\sqrt{c} f}}-\frac{\tan ^{-1}\left (\frac{\sqrt{d+e x} \sqrt{\sqrt{c} f-\sqrt{-a} g}}{\sqrt{f+g x} \sqrt{\sqrt{-a} e-\sqrt{c} d}}\right )}{\sqrt{\sqrt{-a} e-\sqrt{c} d} \sqrt{\sqrt{c} f-\sqrt{-a} g}}}{\sqrt{-a}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[d + e*x]*Sqrt[f + g*x]*(a + c*x^2)),x]

[Out]

(-(ArcTan[(Sqrt[-(Sqrt[c]*f) - Sqrt[-a]*g]*Sqrt[d + e*x])/(Sqrt[Sqrt[c]*d + Sqrt[-a]*e]*Sqrt[f + g*x])]/(Sqrt[
Sqrt[c]*d + Sqrt[-a]*e]*Sqrt[-(Sqrt[c]*f) - Sqrt[-a]*g])) - ArcTan[(Sqrt[Sqrt[c]*f - Sqrt[-a]*g]*Sqrt[d + e*x]
)/(Sqrt[-(Sqrt[c]*d) + Sqrt[-a]*e]*Sqrt[f + g*x])]/(Sqrt[-(Sqrt[c]*d) + Sqrt[-a]*e]*Sqrt[Sqrt[c]*f - Sqrt[-a]*
g]))/Sqrt[-a]

________________________________________________________________________________________

Maple [B]  time = 0.413, size = 1415, normalized size = 6.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^(1/2)/(c*x^2+a)/(g*x+f)^(1/2),x)

[Out]

-1/2*c^2*(ln((2*(-a*c)^(1/2)*x*e*g+x*c*d*g+x*c*e*f+2*((g*x+f)*(e*x+d))^(1/2)*(((-a*c)^(1/2)*d*g+(-a*c)^(1/2)*e
*f-a*e*g+c*d*f)/c)^(1/2)*c+(-a*c)^(1/2)*d*g+(-a*c)^(1/2)*e*f+2*c*d*f)/(c*x-(-a*c)^(1/2)))*a^2*e^2*g^2*(-((-a*c
)^(1/2)*d*g+(-a*c)^(1/2)*e*f+a*e*g-c*d*f)/c)^(1/2)+ln((2*(-a*c)^(1/2)*x*e*g+x*c*d*g+x*c*e*f+2*((g*x+f)*(e*x+d)
)^(1/2)*(((-a*c)^(1/2)*d*g+(-a*c)^(1/2)*e*f-a*e*g+c*d*f)/c)^(1/2)*c+(-a*c)^(1/2)*d*g+(-a*c)^(1/2)*e*f+2*c*d*f)
/(c*x-(-a*c)^(1/2)))*a*c*d^2*g^2*(-((-a*c)^(1/2)*d*g+(-a*c)^(1/2)*e*f+a*e*g-c*d*f)/c)^(1/2)+ln((2*(-a*c)^(1/2)
*x*e*g+x*c*d*g+x*c*e*f+2*((g*x+f)*(e*x+d))^(1/2)*(((-a*c)^(1/2)*d*g+(-a*c)^(1/2)*e*f-a*e*g+c*d*f)/c)^(1/2)*c+(
-a*c)^(1/2)*d*g+(-a*c)^(1/2)*e*f+2*c*d*f)/(c*x-(-a*c)^(1/2)))*a*c*e^2*f^2*(-((-a*c)^(1/2)*d*g+(-a*c)^(1/2)*e*f
+a*e*g-c*d*f)/c)^(1/2)+ln((2*(-a*c)^(1/2)*x*e*g+x*c*d*g+x*c*e*f+2*((g*x+f)*(e*x+d))^(1/2)*(((-a*c)^(1/2)*d*g+(
-a*c)^(1/2)*e*f-a*e*g+c*d*f)/c)^(1/2)*c+(-a*c)^(1/2)*d*g+(-a*c)^(1/2)*e*f+2*c*d*f)/(c*x-(-a*c)^(1/2)))*c^2*d^2
*f^2*(-((-a*c)^(1/2)*d*g+(-a*c)^(1/2)*e*f+a*e*g-c*d*f)/c)^(1/2)-ln((-2*(-a*c)^(1/2)*x*e*g+x*c*d*g+x*c*e*f+2*(-
((-a*c)^(1/2)*d*g+(-a*c)^(1/2)*e*f+a*e*g-c*d*f)/c)^(1/2)*((g*x+f)*(e*x+d))^(1/2)*c-(-a*c)^(1/2)*d*g-(-a*c)^(1/
2)*e*f+2*c*d*f)/(c*x+(-a*c)^(1/2)))*a^2*e^2*g^2*(((-a*c)^(1/2)*d*g+(-a*c)^(1/2)*e*f-a*e*g+c*d*f)/c)^(1/2)-ln((
-2*(-a*c)^(1/2)*x*e*g+x*c*d*g+x*c*e*f+2*(-((-a*c)^(1/2)*d*g+(-a*c)^(1/2)*e*f+a*e*g-c*d*f)/c)^(1/2)*((g*x+f)*(e
*x+d))^(1/2)*c-(-a*c)^(1/2)*d*g-(-a*c)^(1/2)*e*f+2*c*d*f)/(c*x+(-a*c)^(1/2)))*a*c*d^2*g^2*(((-a*c)^(1/2)*d*g+(
-a*c)^(1/2)*e*f-a*e*g+c*d*f)/c)^(1/2)-ln((-2*(-a*c)^(1/2)*x*e*g+x*c*d*g+x*c*e*f+2*(-((-a*c)^(1/2)*d*g+(-a*c)^(
1/2)*e*f+a*e*g-c*d*f)/c)^(1/2)*((g*x+f)*(e*x+d))^(1/2)*c-(-a*c)^(1/2)*d*g-(-a*c)^(1/2)*e*f+2*c*d*f)/(c*x+(-a*c
)^(1/2)))*a*c*e^2*f^2*(((-a*c)^(1/2)*d*g+(-a*c)^(1/2)*e*f-a*e*g+c*d*f)/c)^(1/2)-ln((-2*(-a*c)^(1/2)*x*e*g+x*c*
d*g+x*c*e*f+2*(-((-a*c)^(1/2)*d*g+(-a*c)^(1/2)*e*f+a*e*g-c*d*f)/c)^(1/2)*((g*x+f)*(e*x+d))^(1/2)*c-(-a*c)^(1/2
)*d*g-(-a*c)^(1/2)*e*f+2*c*d*f)/(c*x+(-a*c)^(1/2)))*c^2*d^2*f^2*(((-a*c)^(1/2)*d*g+(-a*c)^(1/2)*e*f-a*e*g+c*d*
f)/c)^(1/2))*(g*x+f)^(1/2)*(e*x+d)^(1/2)/(-((-a*c)^(1/2)*d*g+(-a*c)^(1/2)*e*f+a*e*g-c*d*f)/c)^(1/2)/(c*f-(-a*c
)^(1/2)*g)/(-(-a*c)^(1/2)*e+c*d)/(((-a*c)^(1/2)*d*g+(-a*c)^(1/2)*e*f-a*e*g+c*d*f)/c)^(1/2)/(-a*c)^(1/2)/((-a*c
)^(1/2)*g+c*f)/((-a*c)^(1/2)*e+c*d)/((g*x+f)*(e*x+d))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (c x^{2} + a\right )} \sqrt{e x + d} \sqrt{g x + f}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(c*x^2+a)/(g*x+f)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((c*x^2 + a)*sqrt(e*x + d)*sqrt(g*x + f)), x)

________________________________________________________________________________________

Fricas [B]  time = 141.759, size = 8408, normalized size = 36.56 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(c*x^2+a)/(g*x+f)^(1/2),x, algorithm="fricas")

[Out]

-1/4*sqrt(-(c*d*f - a*e*g + ((a*c^2*d^2 + a^2*c*e^2)*f^2 + (a^2*c*d^2 + a^3*e^2)*g^2)*sqrt(-(c*e^2*f^2 + 2*c*d
*e*f*g + c*d^2*g^2)/((a*c^4*d^4 + 2*a^2*c^3*d^2*e^2 + a^3*c^2*e^4)*f^4 + 2*(a^2*c^3*d^4 + 2*a^3*c^2*d^2*e^2 +
a^4*c*e^4)*f^2*g^2 + (a^3*c^2*d^4 + 2*a^4*c*d^2*e^2 + a^5*e^4)*g^4)))/((a*c^2*d^2 + a^2*c*e^2)*f^2 + (a^2*c*d^
2 + a^3*e^2)*g^2))*log((e^2*f^2 + 2*d*e*f*g + d^2*g^2 + 2*(c*d*e*f^2 - a*d*e*g^2 + (c*d^2 - a*e^2)*f*g - ((a*c
^2*d^2*e + a^2*c*e^3)*f^3 + (a*c^2*d^3 + a^2*c*d*e^2)*f^2*g + (a^2*c*d^2*e + a^3*e^3)*f*g^2 + (a^2*c*d^3 + a^3
*d*e^2)*g^3)*sqrt(-(c*e^2*f^2 + 2*c*d*e*f*g + c*d^2*g^2)/((a*c^4*d^4 + 2*a^2*c^3*d^2*e^2 + a^3*c^2*e^4)*f^4 +
2*(a^2*c^3*d^4 + 2*a^3*c^2*d^2*e^2 + a^4*c*e^4)*f^2*g^2 + (a^3*c^2*d^4 + 2*a^4*c*d^2*e^2 + a^5*e^4)*g^4)))*sqr
t(e*x + d)*sqrt(g*x + f)*sqrt(-(c*d*f - a*e*g + ((a*c^2*d^2 + a^2*c*e^2)*f^2 + (a^2*c*d^2 + a^3*e^2)*g^2)*sqrt
(-(c*e^2*f^2 + 2*c*d*e*f*g + c*d^2*g^2)/((a*c^4*d^4 + 2*a^2*c^3*d^2*e^2 + a^3*c^2*e^4)*f^4 + 2*(a^2*c^3*d^4 +
2*a^3*c^2*d^2*e^2 + a^4*c*e^4)*f^2*g^2 + (a^3*c^2*d^4 + 2*a^4*c*d^2*e^2 + a^5*e^4)*g^4)))/((a*c^2*d^2 + a^2*c*
e^2)*f^2 + (a^2*c*d^2 + a^3*e^2)*g^2)) + 2*(e^2*f*g + d*e*g^2)*x + (2*(c^2*d^3 + a*c*d*e^2)*f^3 + 2*(a*c*d^3 +
 a^2*d*e^2)*f*g^2 + ((c^2*d^2*e + a*c*e^3)*f^3 + (c^2*d^3 + a*c*d*e^2)*f^2*g + (a*c*d^2*e + a^2*e^3)*f*g^2 + (
a*c*d^3 + a^2*d*e^2)*g^3)*x)*sqrt(-(c*e^2*f^2 + 2*c*d*e*f*g + c*d^2*g^2)/((a*c^4*d^4 + 2*a^2*c^3*d^2*e^2 + a^3
*c^2*e^4)*f^4 + 2*(a^2*c^3*d^4 + 2*a^3*c^2*d^2*e^2 + a^4*c*e^4)*f^2*g^2 + (a^3*c^2*d^4 + 2*a^4*c*d^2*e^2 + a^5
*e^4)*g^4)))/x) + 1/4*sqrt(-(c*d*f - a*e*g + ((a*c^2*d^2 + a^2*c*e^2)*f^2 + (a^2*c*d^2 + a^3*e^2)*g^2)*sqrt(-(
c*e^2*f^2 + 2*c*d*e*f*g + c*d^2*g^2)/((a*c^4*d^4 + 2*a^2*c^3*d^2*e^2 + a^3*c^2*e^4)*f^4 + 2*(a^2*c^3*d^4 + 2*a
^3*c^2*d^2*e^2 + a^4*c*e^4)*f^2*g^2 + (a^3*c^2*d^4 + 2*a^4*c*d^2*e^2 + a^5*e^4)*g^4)))/((a*c^2*d^2 + a^2*c*e^2
)*f^2 + (a^2*c*d^2 + a^3*e^2)*g^2))*log((e^2*f^2 + 2*d*e*f*g + d^2*g^2 - 2*(c*d*e*f^2 - a*d*e*g^2 + (c*d^2 - a
*e^2)*f*g - ((a*c^2*d^2*e + a^2*c*e^3)*f^3 + (a*c^2*d^3 + a^2*c*d*e^2)*f^2*g + (a^2*c*d^2*e + a^3*e^3)*f*g^2 +
 (a^2*c*d^3 + a^3*d*e^2)*g^3)*sqrt(-(c*e^2*f^2 + 2*c*d*e*f*g + c*d^2*g^2)/((a*c^4*d^4 + 2*a^2*c^3*d^2*e^2 + a^
3*c^2*e^4)*f^4 + 2*(a^2*c^3*d^4 + 2*a^3*c^2*d^2*e^2 + a^4*c*e^4)*f^2*g^2 + (a^3*c^2*d^4 + 2*a^4*c*d^2*e^2 + a^
5*e^4)*g^4)))*sqrt(e*x + d)*sqrt(g*x + f)*sqrt(-(c*d*f - a*e*g + ((a*c^2*d^2 + a^2*c*e^2)*f^2 + (a^2*c*d^2 + a
^3*e^2)*g^2)*sqrt(-(c*e^2*f^2 + 2*c*d*e*f*g + c*d^2*g^2)/((a*c^4*d^4 + 2*a^2*c^3*d^2*e^2 + a^3*c^2*e^4)*f^4 +
2*(a^2*c^3*d^4 + 2*a^3*c^2*d^2*e^2 + a^4*c*e^4)*f^2*g^2 + (a^3*c^2*d^4 + 2*a^4*c*d^2*e^2 + a^5*e^4)*g^4)))/((a
*c^2*d^2 + a^2*c*e^2)*f^2 + (a^2*c*d^2 + a^3*e^2)*g^2)) + 2*(e^2*f*g + d*e*g^2)*x + (2*(c^2*d^3 + a*c*d*e^2)*f
^3 + 2*(a*c*d^3 + a^2*d*e^2)*f*g^2 + ((c^2*d^2*e + a*c*e^3)*f^3 + (c^2*d^3 + a*c*d*e^2)*f^2*g + (a*c*d^2*e + a
^2*e^3)*f*g^2 + (a*c*d^3 + a^2*d*e^2)*g^3)*x)*sqrt(-(c*e^2*f^2 + 2*c*d*e*f*g + c*d^2*g^2)/((a*c^4*d^4 + 2*a^2*
c^3*d^2*e^2 + a^3*c^2*e^4)*f^4 + 2*(a^2*c^3*d^4 + 2*a^3*c^2*d^2*e^2 + a^4*c*e^4)*f^2*g^2 + (a^3*c^2*d^4 + 2*a^
4*c*d^2*e^2 + a^5*e^4)*g^4)))/x) - 1/4*sqrt(-(c*d*f - a*e*g - ((a*c^2*d^2 + a^2*c*e^2)*f^2 + (a^2*c*d^2 + a^3*
e^2)*g^2)*sqrt(-(c*e^2*f^2 + 2*c*d*e*f*g + c*d^2*g^2)/((a*c^4*d^4 + 2*a^2*c^3*d^2*e^2 + a^3*c^2*e^4)*f^4 + 2*(
a^2*c^3*d^4 + 2*a^3*c^2*d^2*e^2 + a^4*c*e^4)*f^2*g^2 + (a^3*c^2*d^4 + 2*a^4*c*d^2*e^2 + a^5*e^4)*g^4)))/((a*c^
2*d^2 + a^2*c*e^2)*f^2 + (a^2*c*d^2 + a^3*e^2)*g^2))*log((e^2*f^2 + 2*d*e*f*g + d^2*g^2 + 2*(c*d*e*f^2 - a*d*e
*g^2 + (c*d^2 - a*e^2)*f*g + ((a*c^2*d^2*e + a^2*c*e^3)*f^3 + (a*c^2*d^3 + a^2*c*d*e^2)*f^2*g + (a^2*c*d^2*e +
 a^3*e^3)*f*g^2 + (a^2*c*d^3 + a^3*d*e^2)*g^3)*sqrt(-(c*e^2*f^2 + 2*c*d*e*f*g + c*d^2*g^2)/((a*c^4*d^4 + 2*a^2
*c^3*d^2*e^2 + a^3*c^2*e^4)*f^4 + 2*(a^2*c^3*d^4 + 2*a^3*c^2*d^2*e^2 + a^4*c*e^4)*f^2*g^2 + (a^3*c^2*d^4 + 2*a
^4*c*d^2*e^2 + a^5*e^4)*g^4)))*sqrt(e*x + d)*sqrt(g*x + f)*sqrt(-(c*d*f - a*e*g - ((a*c^2*d^2 + a^2*c*e^2)*f^2
 + (a^2*c*d^2 + a^3*e^2)*g^2)*sqrt(-(c*e^2*f^2 + 2*c*d*e*f*g + c*d^2*g^2)/((a*c^4*d^4 + 2*a^2*c^3*d^2*e^2 + a^
3*c^2*e^4)*f^4 + 2*(a^2*c^3*d^4 + 2*a^3*c^2*d^2*e^2 + a^4*c*e^4)*f^2*g^2 + (a^3*c^2*d^4 + 2*a^4*c*d^2*e^2 + a^
5*e^4)*g^4)))/((a*c^2*d^2 + a^2*c*e^2)*f^2 + (a^2*c*d^2 + a^3*e^2)*g^2)) + 2*(e^2*f*g + d*e*g^2)*x - (2*(c^2*d
^3 + a*c*d*e^2)*f^3 + 2*(a*c*d^3 + a^2*d*e^2)*f*g^2 + ((c^2*d^2*e + a*c*e^3)*f^3 + (c^2*d^3 + a*c*d*e^2)*f^2*g
 + (a*c*d^2*e + a^2*e^3)*f*g^2 + (a*c*d^3 + a^2*d*e^2)*g^3)*x)*sqrt(-(c*e^2*f^2 + 2*c*d*e*f*g + c*d^2*g^2)/((a
*c^4*d^4 + 2*a^2*c^3*d^2*e^2 + a^3*c^2*e^4)*f^4 + 2*(a^2*c^3*d^4 + 2*a^3*c^2*d^2*e^2 + a^4*c*e^4)*f^2*g^2 + (a
^3*c^2*d^4 + 2*a^4*c*d^2*e^2 + a^5*e^4)*g^4)))/x) + 1/4*sqrt(-(c*d*f - a*e*g - ((a*c^2*d^2 + a^2*c*e^2)*f^2 +
(a^2*c*d^2 + a^3*e^2)*g^2)*sqrt(-(c*e^2*f^2 + 2*c*d*e*f*g + c*d^2*g^2)/((a*c^4*d^4 + 2*a^2*c^3*d^2*e^2 + a^3*c
^2*e^4)*f^4 + 2*(a^2*c^3*d^4 + 2*a^3*c^2*d^2*e^2 + a^4*c*e^4)*f^2*g^2 + (a^3*c^2*d^4 + 2*a^4*c*d^2*e^2 + a^5*e
^4)*g^4)))/((a*c^2*d^2 + a^2*c*e^2)*f^2 + (a^2*c*d^2 + a^3*e^2)*g^2))*log((e^2*f^2 + 2*d*e*f*g + d^2*g^2 - 2*(
c*d*e*f^2 - a*d*e*g^2 + (c*d^2 - a*e^2)*f*g + ((a*c^2*d^2*e + a^2*c*e^3)*f^3 + (a*c^2*d^3 + a^2*c*d*e^2)*f^2*g
 + (a^2*c*d^2*e + a^3*e^3)*f*g^2 + (a^2*c*d^3 + a^3*d*e^2)*g^3)*sqrt(-(c*e^2*f^2 + 2*c*d*e*f*g + c*d^2*g^2)/((
a*c^4*d^4 + 2*a^2*c^3*d^2*e^2 + a^3*c^2*e^4)*f^4 + 2*(a^2*c^3*d^4 + 2*a^3*c^2*d^2*e^2 + a^4*c*e^4)*f^2*g^2 + (
a^3*c^2*d^4 + 2*a^4*c*d^2*e^2 + a^5*e^4)*g^4)))*sqrt(e*x + d)*sqrt(g*x + f)*sqrt(-(c*d*f - a*e*g - ((a*c^2*d^2
 + a^2*c*e^2)*f^2 + (a^2*c*d^2 + a^3*e^2)*g^2)*sqrt(-(c*e^2*f^2 + 2*c*d*e*f*g + c*d^2*g^2)/((a*c^4*d^4 + 2*a^2
*c^3*d^2*e^2 + a^3*c^2*e^4)*f^4 + 2*(a^2*c^3*d^4 + 2*a^3*c^2*d^2*e^2 + a^4*c*e^4)*f^2*g^2 + (a^3*c^2*d^4 + 2*a
^4*c*d^2*e^2 + a^5*e^4)*g^4)))/((a*c^2*d^2 + a^2*c*e^2)*f^2 + (a^2*c*d^2 + a^3*e^2)*g^2)) + 2*(e^2*f*g + d*e*g
^2)*x - (2*(c^2*d^3 + a*c*d*e^2)*f^3 + 2*(a*c*d^3 + a^2*d*e^2)*f*g^2 + ((c^2*d^2*e + a*c*e^3)*f^3 + (c^2*d^3 +
 a*c*d*e^2)*f^2*g + (a*c*d^2*e + a^2*e^3)*f*g^2 + (a*c*d^3 + a^2*d*e^2)*g^3)*x)*sqrt(-(c*e^2*f^2 + 2*c*d*e*f*g
 + c*d^2*g^2)/((a*c^4*d^4 + 2*a^2*c^3*d^2*e^2 + a^3*c^2*e^4)*f^4 + 2*(a^2*c^3*d^4 + 2*a^3*c^2*d^2*e^2 + a^4*c*
e^4)*f^2*g^2 + (a^3*c^2*d^4 + 2*a^4*c*d^2*e^2 + a^5*e^4)*g^4)))/x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a + c x^{2}\right ) \sqrt{d + e x} \sqrt{f + g x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**(1/2)/(c*x**2+a)/(g*x+f)**(1/2),x)

[Out]

Integral(1/((a + c*x**2)*sqrt(d + e*x)*sqrt(f + g*x)), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(c*x^2+a)/(g*x+f)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError